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1  Introduction

It is well known that materials based on zinc oxide are 
one of the most effective among oxide photocatalysts 
and bactericidal solids [1–5]. ZnO-based heterostructural 
composites containing various semiconductor and metal 
nanoparticles, are especially effective [5–10].

Cu-containing ZnO–Al2O3 nanocomposites demonstrate 
high photocatalytic and bactericidal properties and are 
considered also as effective catalyst for reforming CO2 to 
different organic compounds, photoactive and luminescent 
materials, and potential candidates for sensors applications 
[11–20]. It was established in [12] that ZnO nanomaterials 
doped with copper exhibit good antibacterial activity, which 
increases with increasing level of copper doping.

The generation of reactive oxygen species (singlet oxygen 
[17, 21–23], superoxide radicals [24, 25], hydroxyl radical 
[21, 24]) plays the key role in photocatalytic processes and 
materials bactericidal activity [21–24]. Characteristics of 
exciting radiation, electronic structure, and morphology 
of materials affect the efficiency of their photogeneration 
[21–24, 26, 27].

The highly dispersive materials, consisting of small 
nanoparticles with high surface area, show higher 
photocatalytic properties and antibacterial activity 
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compared with macroscopic ones [27]. The decrease of 
the size of photoactive particles and the optimization of 
materials morphology are used for the enhancement of 
their photocatalytic and bactericidal efficiency [22, 23, 
28–31]. It is known [22, 23, 32] that the sizes of crystals 
in two-component oxide composites are smaller than in 
one-component analogs obtained by the same method 
under similar technological conditions. In [17, 22, 23] this 
approach was used for the fabrication of highly dispersive 
photoactive materials ZnO–Al2O3 [17], ZnO–SnO2 [22] and 
ZnO–MgO–Ag [23].

Different methods have been applied for the preparation 
of Cu-containing ZnO nanomaterials: glucothermal 
method [7], co-precipitation [11, 15], polymer-salt [16], 
etc. Polymer-salt method based on the application of initial 
solutions containing metals salts and soluble organic 
polymers is widely used for the preparation of different 
materials [9, 10, 17–19, 22, 23]. The temperature–time 
schemes of technological processes used in [17, 22, 23] 
provide the simultaneous formation of different crystals 
(ZnO + γAl2O3 [17], ZnO + SnO2 [22] and ZnO + MgO 
[23]) without their chemical interaction. The simultaneous 
formation of different crystals prohibits their growth and 
the aggregation and provides the formation of the material 
structure consisting of small particles with high specific 
surface area.

Photocatalytic and bactericidal properties of ZnO 
are well-known [28–30, 33, 34]. Also, the application of 
ZnAl2O4 nanoparticles as photocatalytic material was 
studied in [4–7, 35–40]. The literature data about ZnAl2O4 
band gap value vary from ~ 3.9 eV to more than 6.0 eV 
[9, 41–43]. Cu additions can improve photocatalytic 
characteristics of ZnAl2O4 [11].

The aim of this work was to synthesis of Cu-doped 
ZnO–ZnAl2O4 nanocomposites which can be used as 
luminescent spectral down-converters and bactericidal 
materials by the polymer-salt method and to study their 
structure, luminescent and bactericidal properties, and the 
ability to generate singlet oxygen.

2 � Materials and Methods

The polymer-salt method which is applied for the synthesis 
of different nanoparticles [9, 10, 17–20] was used in this 
study. The aqueous solutions of Zn(NO3)2, Al(NO3)3 and 
CuSO4 were used as raw materials for the nanocomposites 
synthesis. The solution of polyvinylpyrrolidone (PVP) 
(K30; Mw = 25,000–35,000) in propanol-2 was added to 
the mixture of aqueous solutions of metal salts. Obtained 
mixtures were stirred for 30 min at room temperature. After 
drying obtained polymer-salt composites were calcined in 
air atmosphere at 680 °C for 2 h. Chemical compositions 
of initial solutions and obtained composites are given in 
Table 1.

The diffractometer Rigaku Ultima IV was used for X-ray 
diffraction (XRD) analysis of prepared materials. The 
diffraction patterns were scanned from 20° to 100° (2θ). The 
crystallite size was calculated using the Scherrer’s equation:

where d is the average grain size of the crystallites, λ the 
incident wavelength, θ the Bragg angle (radians) and β is the 
full width at half maximum (FWHM) in radians.

The photoluminescence measurements were carried out 
on the Perkin Elmer LS-50B fluorescence spectrophotometer 
in the spectral range 200–650 nm.

To study the antibacterial activity of the oxide 
composites, the method based on the diffusion into agar and 
described in [44] was used. The test used representative of 
the gram-positive bacteria Staphylococcus aureus ATCC​ 
209P. The bactericidal activity was assessed by measuring 
the size of the inhibited zone. The experiments were carried 
out in natural light.

(1)d =
0.9�

�cos�

Table 1   Chemical composition 
of initial solutions and obtained 
composites

a All Cu content was calculated in the form of CuO

Sample Chemical composition of solutions, wt% Chemical composition of 
powders, mol.%

H2O PVP Propanol-2 Zn (NO3)2
∙6H20

Al (NO3)3
∙6H20

CuSO4·
5H2O

ZnO ZnAl2O4 CuOa

1 51.6 2.58 40.6 3.38 1.77 0.013 78.90 20.65 0.45
2 51.6 2.58 40.6 3.82 1.33 0.014 85.86 13.71 0.43
3 51.6 2.58 40.6 4.09 1.07 0.015 89.23 10.34 0.43
4 51.6 2.58 40.6 4.27 0.9 0.015 91.28 8.33 0.39
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3 � Crystal Structure

XRD patterns of all powders show the peaks characteristic 
for hexagonal ZnO crystals (JCPDS № 36-1451). The 
ratios between intensities of different ZnO peaks are close 
to standard values that indicates the absence of the texture 
in prepared materials. The lattice parameters of ZnO crystals 
and their average sizes obtained from XRD data is given in 
Table 2.

The structures of prepared composites consist of small 
nanocrystals. The average sizes of ZnO crystals are 8–25 nm 
that is less than the size of similar crystals in ZnO–MgO 
(32–35 nm, [45]) and ZnO–MgO–Ag (22–25 nm, [23]) 
powder composites previously formed by the similar 
polymer-salt technique at 550 °C. In addition, the size of 
ZnO crystals is close to that was observed in ZnO–ZnAl2O4 
composites obtained by the sol–gel method at a temperature 
of 600 °C (19–22 nm) [16]. In [23, 45] MgO particles played 
the barrier role by spatially separating ZnO crystals and 
preventing their aggregation and the growth. Based on the 
presented experimental results, it can be concluded that 
limiting the growth of the formed ZnO crystals by chemical 
transformation of some of them into another crystalline 
matrix (ZnAl2O4) at the stage of crystallization of the 
material is also effective.

The lattice constants of hexagonal ZnO crystals mostly 
range from 3.2475 to 3.2501 Å for the a-parameter and 
from 5.2042 to 5.2075 Å for the c-parameter [3]. Cu2+ ions 
slightly smaller than Zn2+ (ionic radii 0.57 and 0.60 Å, 
correspondingly) and Cu2+ easily replace Zn2+ in crystal 
structure that leads to contraction of crystal cell [46]. 
Therefore, the absence of any peaks of Cu compounds 
(Fig. 1) and lower values of lattice parameters a and c of 
formed ZnO crystals compare with the literature data [3] 
(Table 2) may indicate the incorporation of copper ions into 
their structure. This corresponds to the data reported in [16] 
that ZnO–CuO materials with copper content lower than 
15% are one-phase wurtzite-like CuxZn1−xO.

The XRD patterns of all prepared samples show peaks 
related to cubic crystals of ZnAl2O4 (JCPDS No. 05-0669). 
This fact is agreed to the previous studies [9, 11, 47] 
that the application of different liquid-phase techniques 

(co-precipitation [11], sol–gel [20, 47], polymer-salt method 
[9], etc.) provides the formation of ZnAl2O4 crystals at 
relatively low temperatures (T > 550 °C [47]).

SEM analysis showed that the composites consist of 
nanoparticles with a size of < 20 nm (Fig. 2a) that can 
facilitate their effective contact with the environment and 
impart high photocatalytic and bactericidal characteristics to 
the materials. The morphology of the resulting composites 
is similar to that demonstrated in [9] for ZnAl2O4 xerogels. 
Observed nanoscale morphology of composites fully agrees 
to the data of their crystal structure obtained from XRD 
analysis.

4 � Photoluminescence

Numerous  emiss ion  peaks  a re  obser ved  in 
photoluminescence spectra of prepared powders (Fig. 2). 
These peaks are located at 343, 399, 423, 440, 461, 487 and 
533 nm. Usually, two main emission bands are observed 
in luminescence spectra of ZnO-based materials: excitonic 
peak (NBE) in near UV region and wide emission band in 
visible spectral range that is related to different defects of 
ZnO crystal structure [48].

In the photoluminescence spectra of ZnO thin films 
obtained by radio frequency (RF) magnetron sputtering, 
many emission peaks were observed associated with 
the recombination of photogenerated holes with various 
structural defects, for example, ionized charge states of 
intrinsic defects, oxygen vacancies, zinc interstices, and zinc 
vacancies [2]. These luminescence bands were in ultraviolet 
(λmax = 399 nm), violet (λmax = 417, 438, 453 nm), blue 
(λmax = 467 nm) and green spectral ranges.

Cu additions into ZnO crystal structure decrease the 
materials band gap value [16] and significantly increase 
the amount of emission peaks [1, 15]. Photoluminescence 
spectra of CuO·ZnO·ZnAl2O4 showed four peaks at 411, 
433, 459 and 492 nm [15].

ZnAl2O4 crystals are considered as potential ultraviolet 
emitting phosphor for the medical sterilization lamps [49]. 
These crystals emit short-wave ultraviolet (UV-C) light 
under vacuum UV (λex. < 200 nm) irradiation with high 

Table 2   Average sizes and 
lattice parameters of ZnO 
crystals in nanocomposites

a The data of the review of experimental values given in [3]

Sample Average ZnO 
crystals size, nm

Lattice parameters of ZnO crystals

a (Å) c (Å) c/a V (Å3)

1 25.1 3.2447(8) 5.1955(16) 1.6012 47.37(2)
2 14.1 3.2392(6) 5.1834(27) 1.6002 47.10(2)
3 8.2 3.2444(6) 5.1938(12) 1.6009 47.35(2)
4 14.6 3.2490(5) 5.1954(9) 1.5991 47.50(1)
ZnOa – 3.2475–3.2501 5.2042–5.2075 1.593–1.6035
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effectiveness [49]. Three emission bands with maximums 
at 400, 411 and 444 nm were observed in luminescence 
spectra (λex. = 325 nm) of ZnAl2O4 nanoparticles prepared 
by polymer-salt method [9]. These emission peaks can be 
ascribed to intra band gap defects such as oxygen vacancies 
[9, 10]. The luminescence peaks located at 428 and 561 nm 
attributed to structural defects were observed in ZnAl2O4/
ZnO composites obtained by citrate sol–gel method [16].

The peak located at ~ 340 nm (Fig. 3) can be assigned 
to the emission of ZnAl2O4 crystals. It is worth noticing 

that this emission is observed under UV irradiation 
(λex. = 240 nm). So, obtained materials play the role of 
down-converters absorbing UV-C radiation and emitting the 
light of long-wave ultraviolet (UV-A) spectral range. Such 
down-converters can increase the efficiency of solar panels 
based on the ground and in space.

It is known that UV radiation can be divided into three 
parts: UV-A (320–400 nm), middle-wave ultraviolet (UV-B) 
(280–320 nm), and UV-C (200–280 nm). Because UV-C 
radiation has higher photon energy than the binding energy 

Fig. 1   XRD patterns of prepared powders with different Al2O3 contents. Samples 1 (a); 2 (b); 3 (c); 4 (d)

Fig. 2   SEM image of samples 1 
(a) and 3 (b)
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of carbon–carbon bonds it can destroy different hazardous 
materials and bacteria and shows a function as sterilization. 
However, UV-C is very hazardous to organisms [50, 51]. 
UV-A radiation is friendly to living organisms and is 
effective in producing tannins and vitamin D [49]. Also, 
it was reported in [52] that the growth of vegetables plants 
exposed to UV-A radiation was greater than that of plants 
exposed to no UV radiation. This effect of UV-A radiation 
has associated with an increase in chlorophyll content in 
vegetables and increased photosynthetic activity.

It is worth noticing that some overlapping of the bands 
in luminescence excitation spectra (curve 5 (Fig. 3a); curve 
4 (Fig. 3b)) and emission peaks in luminescence spectra 
(curves 1 and 2 (Fig. 3a); curve 1 (Fig. 3b) that is observed 
in the spectral range 330–360 nm. Taking in account this 
fact and close nanoparticles package in the material structure 
(Fig. 2) it is possible assuming the possibility of the energy 

transfer between different centers or to the light reabsorption 
in composites with the following emission in the visible 
spectral range.

5 � Singlet Oxygen Photogeneration

Figures  4 and 5 show the photoluminescence spectra 
of prepared powders in near infrared (NIR) spectral 
range. The luminescent band with λmax. = 1270 nm which 
is characteristic for singlet oxygen was observed in 
photoluminescence spectra of all samples (Figs. 4, 5). The 
comparison of Figs. 4 and 5 shows that the luminescent 
band intensities are higher at the irradiation of blue light 
(λex = 405 nm) (Fig. 5). This is related to the higher power 
density of blue LED compare with UV LED (see “Material 
and Methods” section).

6 � Antibacterial Activity

Experiments demonstrated antibacterial activity composites 
against gram-positive bacteria. Figure 6 shows the photo 
of composite 1 disposed inside agar with gram-positive 
bacteria Staphylococcus aureus ATCC​ 209P. This photo 
demonstrates the dark zone surrounding the sample which 
zone is free from bacteria. The comparison of the thickness 
of these zones with our previous results [22, 23] shows 
that prepared nanocomposites demonstrate comparable 
bactericidal properties against gram-positive with 
Ag-containing ZnO-based composites.

The mechanisms of antibacterial effect of ZnO-containing 
nanomaterials include the generation of reactive oxygen 
species [23, 24, 53, 54], the destruction of bacterial cell 
integrity [55], diffusion antimicrobial Zn2+ ion into the 
bacterial cell [56]. The obtained experimental results of 
singlet oxygen photogeneration (Fig. 4) suggest that the 
generation of reactive oxygen species (ROS) can plays the 
key role in the antibacterial effect of prepared materials.

7 � Conclusion

Cu-doped ZnO/ZnAl2O3 nanocomposites were prepared 
by polymer-salt synthesis at 680 °C. The nanocomposites 
consist of small hexagonal ZnO and cubic ZnAl2O4 
nanocrystals having size about 10 nm. The limitation of 
forming ZnO crystals growth by the chemical conversion 
of their part into another crystal matrix during material 
crystallization stage is effective for the synthesis of highly 
dispersive photoactive materials. Cu ions were embedded 
into the crystal structure of Zn-containing crystals. Obtained 

Fig. 3   (a) Photoluminescence spectra (curves 1–4) and excitation 
luminescence spectrum (curve 5) of the sample 1. Excitation 
wavelengths, nm: 240 (curve 1); 257 (curve 2); 272 (curve 
3); 330 (curve 4). Emission wavelength, nm: 390 (curve 5). b 
Photoluminescence spectra (curves 1–3) and excitation luminescence 
spectrum (curve 4) of the sample 4. Excitation wavelengths, nm: 270 
(curve 1); 330 (curve 2); 370 (curve 3). Emission wavelength, nm: 
390 (curve 4)
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Fig. 4   Photoluminescence spec-
tra (λex. = 370 nm) in near IR 
spectral range of nanocompos-
ites 1 (a); 2 (b); 3 (c); 4 (d)

Fig. 5   Photoluminescence spec-
tra (λex. = 405 nm) in near IR 
spectral range of nanocompos-
ites 1 (a); 2 (b); 3 (c); 4 (d)
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nanocomposites can be used as light down-convertors that 
convert UV-C radiation into UV-A and visible spectral range. 
Materials demonstrate the ability to generate chemically 
active singlet oxygen under UV-A radiation and blue 
light. The experiments show that Cu-doped ZnO–ZnAl2O4 
materials demonstrate antibacterial activity against gram-
positive bacteria.
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