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Abstract: Metallic cylinders are widely used in various fields of industrial production, and the
automatic detection of surface microcracks is of great significance to the subsequent grinding process.
In this paper, laser-excited surface acoustic waves (SAW) are used to detect surface microcracks. Due
to the dispersion of SAWs on the cylinder surface, the SAWs exhibit different polarities at different
positions. In order to improve the consistency of signals and the accuracy of the modeling, the angle
at which the polarity is completely reversed is selected as the detection point. A laser ultrasonic
automatic detection system is established to obtain signals, and the B-scan image is drawn to
determine the location of the microcrack. By comparing the time–frequency diagrams of the reflected
SAWs and transmitted SAWs, the transmitted wave is chosen to establish the microcrack depth
prediction model. In addition, according to the trajectory of the grinding wheel, a prediction model
based on the absolute depth of the microcracks is established, and the influence of the orientation of
the microcracks on the signal energy is considered. The method proposed in this paper can provide
a reference for the rapid grinding of microcracks on the surface of metallic cylinders; it has the
characteristics of visualization and high efficiency, and overcomes the shortcomings of the currently
used eddy current testing that provides information on the depth of microcracks with difficulty.

Keywords: laser ultrasonic; surface microcrack; metallic cylinder; dispersion; time–frequency analysis

1. Introduction

Metallic cylinders are one of the important products in the iron and steel industry.
As a workpiece for rotary parts, they are widely used in many industrial fields [1]. The
surface quality of metallic cylinders has an important influence on the machining process
of the part. During the process of producing metallic cylinders, surface defects such as
microcracks will inevitably appear on the surface due to the workpiece and equipment
used [2]. These microcracks are prone to further expansion during plastic processing [3],
resulting in scrapped parts. Therefore, the high-precision non-destructive detection of
surface microcracks in metallic cylinders is of great significance to the subsequent grinding
process [4].

Magnetic particle testing (MT) [5], penetrant testing (PT) [6], eddy-current testing
(ECT) [7] and ultrasonic testing (UT) [8] are the commonly used non-destructive methods
used to test for surface defects. MT is mainly applied to the surface detection of ferro-
magnetic materials, but it cannot be applied to the detection of copper, aluminum and
other non-ferromagnetic materials [9]. PT is able to fully display the shape, size, position
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and depth of the defect by using the capillary principle of the imaging agent, but it can
only be used for the detection of surface opening defects, and it easily produces chemical
pollution [10]. Although ECT can be applied to the detection of defects in various metal
and alloy conductive material specimens, it cannot reveal the nature and characteristics
of the defects in the signal, and also cannot provide technical reference for subsequent
grinding [11]. UT has the advantages of involving various detection methods and possess-
ing a high detection efficiency, and is widely used in industrial automation detection [12].
Compared with piezoelectric ultrasonic testing, laser ultrasonic (LU) testing can realize the
long-distance excitation and detection of ultrasonic waves, and has a higher temporal and
spatial resolution; it is therefore a method that can achieve online ultrasonic testing [13–16].

Zeng et al. [17] established a physical model for the LU detection of the position
and depth of surface defects in cylindrical pipes; the surface defect is identified by the
changes in the reflection waves of the surface acoustic wave (SAW) and shear wave, and
the relationship between the surface defect and the peak value of the reflection surface
wave is pointed out. Shant et al. [18] explored the propagation law of SAW on the cylin-
drical surface from the perspective of phase velocity and group velocity. By deriving the
propagation of SAW in different coordinate systems and combining it with experiments,
the phase–dispersion relationship of SAW on cylindrical components is proven and a
clear mathematical basis is given, which shows the sensitivity of the phase to detecting
changes in the sample geometry. Hu et al. [19] analyzed the process of changing the phase
velocity and group velocity during SAW propagation on the cylindrical surface from the
perspective of the wave number, and verified the theoretical results via experiments. Zhao
et al. [20] built a hybrid laser–EMAT system and used time-of-flight analysis to detect
artificial surface defects; the results showed that the proposed method has a high detection
accuracy. In fact, cracks are not always perpendicular to the sample surface. Li et al. [21]
used a seven-feature parameter support vector machine (SVM) model to intelligently and
quickly identify the depths and angles of oblique surface cracks. Zeng et al. [22] used the
finite element method to investigate the relationship between the crack orientation and the
LU spectrum. Li et al. [23] studied the different reflection and transmission capabilities of
different components of SAWs at cracks, and analyzed the relationship between the depth
of surface cracks and the critical wavelength of surface SAWs. The above studies prove the
feasibility of using SAWs to detect surface microcracks in metallic cylinders. However, due
to the phase shift and dispersion characteristics of SAWs in the process of propagating on
curved surfaces, the high-precision characterization of angled microcracks on the surface
of metallic cylinders is significant to the following grinding process.

In this paper, an automatic LU experimental platform for a metallic cylinder was
established to detect surface microcracks. The ultrasonic signals of the surface microcracks
with different depths were obtained via rotational scanning, and the B-scan images were
drawn to visually determine the location of the microcracks. According to the characteristics
of reflection SAWs and transmission SAWs, the most suitable depth calculation model and
definition method for microcrack grinding are determined, and the robustness of the model
with different microcrack orientations is discussed. The method proposed in this paper can
provide a reference for the rapid grinding of metallic cylinder surface.

2. Materials and Methods
2.1. Methods

Laser-excited ultrasound is a process in which laser energy is converted into me-
chanical energy [24]. When a pulsed laser beam is incident on a solid surface, part of the
laser energy is absorbed by the solid and converted into heat energy. The irradiated area
produces a local rapid temperature rise, which leads to local rapid thermal expansion and
thus ultrasound generation; this is the thermoelastic mechanism of laser ultrasonic [25].
The advantage of the thermoelastic mechanism is that the power of the pulse laser is small
and is not enough to exceed the damage threshold of the material surface; it will therefore
not cause damage to the irradiated area of the test sample so is suitable for non-destructive
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testing. SAWs are used to detect surface microcracks in metallic cylinders, as shown in
Figure 1, where the red beam represents the pulsed laser that excites the ultrasound, and
the green beam represents the continuous laser that detects the ultrasound.
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Figure 1. Schematic diagram of the relative positional relationship between pulsed laser, continuous
laser and surface defects. (a) Three-dimensional schematic diagram of surface microcrack testing on
the metallic cylinder using LU; (b) The geometric relationship between the excitation and detection
beams, where θ is the angle between the microcrack and the excitation point, and α is the angle
between the excitation point and the detection point.

The LU testing system is shown in Figure 2. It was composed of a two-wave-mixing
(TWM) interferometer, a pulsed laser, an electronically controlled platform, and a signal
acquisition device, all of which were controlled by a control system.
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Figure 2. Laser ultrasonic testing system. The electronically controlled platform is driven by stepper
motors, and the stepper motor is connected to the PCI controller.

The ultrasonic waves were generated by a Nd:YAG pulsed laser (Beamtech Nimma-
400, Beijing, China) with a wavelength of 1064 nm and a pulse width of 8 ns; the main
parameters are shown in Table 1. The pulsed laser was reflected by a reflector and then
focused using a cylindrical lens (focal length 20 cm) into a 5 mm × 0.2 mm line-shape spot,
and the applied energy was approximately 1 mJ.

The SAWs were detected using a TWM interferometer, which adopted a 532 nm single-
longitudinal-mode continuous wave (CW) laser (Cobolt 05-01 Samba) as its source; the
parameters of the CW laser are shown in Table 2. The Bi12SiO20 (BSO) crystal was the
core of the TWM interferometer, which used its photorefractive effect to demodulate the
ultrasonic vibration into a photoelectric signal to realize ultrasonic detection. Compared
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with other ultrasonic detection methods, the advantage of the TWM interferometer is
that the reference beam is wavefront matched when it interferes with the signal beam,
which ensures its applicability and signal-to-noise ratio (SNR) on rough surfaces [26,27],
especially on the metallic cylinder. In addition, the two interfering beams can be kept
orthogonal automatically without any additional active compensation equipment [28], so
as to improve the stability of filtering out low-frequency interference. A plano-convex lens
was placed in front of the TWM interferometer to collect cluttered reflected CW lasers from
the rough surface.

Table 1. Pulsed laser parameters.

Parameters Values

Wavelength (nm) 1064
Pulse width (ns) 8

Pulse energy (mJ) 200
Repetition frequency (Hz) 1~10
Divergency angle (mrad) 1

Beam diameter (mm) 6

Table 2. TWM Interferometer parameters.

Parameters Values

Wavelength (nm) 532
Power (W) 2

Linewidth (nm) <10−5

Beam diameter (1/e2, mm) ~1.5
Divergency angle (mrad) <1.5

Power fluctuation range (%) 2
Spatial mode TEM00

In this experiment, the signal acquisition device consisted of a photodetector (PDA
10A2, 150 MHz) and an oscilloscope (Tektronix MBO34, 200 MHz, 2.5 GS/s). During the
experiment, the waveform was averaged 128 times to reduce irrelevant noise in the data.
The samples were fixed by a centering three-jaw chuck with a scale on the side. The stepper
motor drove the chuck to rotate and was controlled by the computer via the PCI controller
(PCI-1240U). The control program was developed using LabVIEW, and the stepping motor
was controlled by outputting pulse signals to realize the stepping rotation of the sample.

2.2. Materials

Samples in this experiment were made of Q235 steel (the Q designates the yield point,
and the 235 indicates the yield strength), and the chemical composition of Q235 is shown in
Table 3. The diameter of the metallic cylinders was 10 mm, and the surface of all the samples
was smooth and clean without scratches. The surface defects of the samples were replaced
by artificial rectangular grooves, with a width of 0.2 mm and a depth of 0.2–1.0 mm, with
an interval of 0.2 mm.

Table 3. The chemical composition of Q235 steel.

C% Mn% Si% S% P%

0.22 1.4 0.35 0.05 0.045

In the testing process, the sample was firstly installed in the chuck at a random position,
and then the pulsed laser with a specified intensity was emitted from the Nd:YAG laser,
and the laser beam was focused by a cylindrical lens with a focal length of 200 mm, forming
a line source with a length of 5 mm and a width of 0.5 mm on the surface of the sample.
Finally, SAWs propagating along the circumference of the metallic cylinder were excited.
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When the SAWs propagated to the detection point, the TWM interferometer demodulated
the ultrasonic vibration into an electrical signal and transmitted it to the signal acquisition
device (the signal was displayed on the oscilloscope and stored in the computer). Then,
the LabVIEW program drove the stepper motor to rotate through the PCI controller, and
the stepper motor drove the sample to rotate one step clockwise. The above steps were
repeated until the metallic cylinder rotated a full circle.

3. Results and Analysis
3.1. Surface Wave Analysis

Assuming that the length of the focused line source along the axis of the cylinder is 2d
(y direction shown in Figure 1a), and the SAW propagates along the sample surface, the
displacement of the SAW can be expressed as follows [29]:

u(α, t) = A
∫ d

−d
Q(ω)eiω[t−s(ω)rα]dω (1)

where α is the angle between the excitation and detection points, t represents the propa-
gation time, A is the amplitude of the SAW, r represents the radius of the cylinder, and
ω is the angular frequency. Q(ω) = 1/(1 + iωτ)2 represents the spectrum of a normalized
function of the pulsed laser shape and τ is the width of the pulsed laser. S(ω) = 1/V(ω) is
the SAW slowness and V(ω) represents the dispersion curve.

The polarity of a broadband SAW changes as it propagates along the cylindrical surface
due to the dispersion. The dispersion curve V can be approximated as follows:

V = VR

(
1 +

ε

ka

)
(2)

where ε is a constant related to the wave velocity, VR represents the velocity of the SAW,
and ka is the wave number. For the phase lag of the SAW ϕ = ϕR + εα, it can be seen that ϕ
is the sum of the phase lag ϕR due to the propagation at the constant velocity VR and an
additional phase shift εα due to the dispersion in the high-frequency range.

Figure 3 shows the LU field simulation images and the measured signals of the
SAWs propagating along the metallic cylinder surface detected by the TWM interferometer.
The software used for numerical simulation was COMSOL Multiphysics. Since the SAW
propagates along the surface of the circle, a gradient grid is used to divide the circular area;
the grid size near the outer circle is 1 µm, and the grid size near the center of the circle is
100 µm. The pulse width of the pulse laser is 8 ns, and the length of the thermoelastic region
is 0.5 mm. The material is set to steel and the time step of the solution is 10 ns. In order
to visually display the process of SAW polarity change, the top of the metallic cylinder is
used as the starting point of 0◦, and the detection point rotates clockwise to receive the
SAW signal. The red signals in Figure 3a–e are the experimental signals of the receiving
point at 30◦, 50◦, 70◦, 90◦ and 110◦ from the excitation point, respectively, and the detection
points of each signal are marked with green arrows in the simulated wavefield. It can be
seen that, due to the phase lag, the polarity of the SAW will change when propagating on
the surface of the metallic cylinder, and that the low-frequency part of the SAW will exceed
the high-frequency part in the process of moving away from the excitation point.

In order to show the process of SAW polarity change more intuitively, a collection of
SAW waveforms with a detection point interval of 10◦ is drawn, as shown in Figure 4. It is
not difficult to find that, as it gradually moves away from the excitation point, the polarity
of the SAW changes periodically; it is gradually transformed from unipolar to bipolar, and
then from bipolar to unipolar. At the position of 110◦ from the excitation point, the SAW is
transformed into complete monopole waves [30].
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Figure 3. Schematic diagram of SAW propagating on a cylindrical surface and its waveform. The
ultrasonic excitation point is on the top of the cylinder, and (a–e) are the experimental signals of the
detection point at 30◦, 50◦, 70◦, 90◦ and 110◦ from the excitation point, respectively. The ultrasonic
detection point is indicated by the green arrow in the figure. Changes in the polarity of the surface
wave can be clearly observed.
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Figure 4. SAWs collected at different detection points, from left to right. The angle α between the
excitation point and the receiving point is from 30◦ to 160◦, with an interval of 10◦.

In the process of propagating along the circumference surface, the SAW encounters
the microcrack and undergoes complex waveform transitions [31]. When the excitation
point and microcrack are located on the opposite side of the detection point and α < 180◦,
the signal detected by the TWM interferometer is as shown in Figure 5. After pulsed
laser excitation, the skimming longitudinal wave (SL) propagating along the surface of
the cylinder first propagates to the detection point. After passing the detection point, the
SL continues to propagate forwards clockwise, encounters the microcrack, reflects, and
forms the skimming longitudinal wave reflection (SLr). After that, the SAW propagating
clockwise (R1) passes through the detection point. When it propagates to the front of the
defect, part of it is reflected and forms the defect reflected wave (Rr) [32]. The other part
propagates along the microcrack to the bottom of the defect and forms the transformed
longitudinal wave (RTL). The RTL propagates inside the cylinder to the detection point.
Because the velocity of the RTL is greater than the Rr, the RTL appears before the Rr in
Figure 5. The SAW propagating counterclockwise (R2) has a long travel distance and needs
to pass through the microcrack, so the amplitude is significantly smaller than that of R1.
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Figure 5. Pulsed laser-excited ultrasonic signal. The peak at time 0 is the trigger signal. L represents
the longitudinal wave, SL is the skimming longitudinal wave, R1 and R2 are the SAWs propagating
clockwise and counterclockwise to the detection point, respectively, RTL is the longitudinal wave
transformed from the SAW, and Rr represents the reflected SAW.

3.2. Identification of the Surface Microcrack’s Location

During the propagation of the SAW on the cylindrical surface, not only will dispersion
occur [33], but complex converted waves will also be generated when the SAW interacts
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with microcracks; this makes it difficult to accurately determine the location and depth of
the microcracks using the pulse-echo method. In this paper, the rotation scanning method
is used to determine the location of microcracks. During the scanning process, the angle
between the pulse laser and the detection point is fixed at 110◦, and only the sample is
rotated. Since the laser ultrasonic signal is unstable during the acquisition process, the
requirement of unipolarity helps to improve the consistency of the acquired signal and
improve the accuracy of the modeling. This method can not only reduce the cost of the
experiment, but is also easy to operate and can effectively reduce unnecessary errors caused
by adjusting the excitation and detection positions during the experiment.

Five samples with different microcrack depths D were detected, and the surface wave
B-scan images are shown in Figure 6. The following information can be obtained via the
B-scan images:
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line at 7.4 µs is R2. (a) D = 0.2 mm, (b) D = 0.4 mm, (c) D = 0.6 mm, (d) D = 0.8 mm, (e) D = 1.0 mm;
the starting positions of all microcracks are random.
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1. The yellow line at time 0 in each figure represents the trigger signal (the wave at
time 0 in Figure 5), the notched yellow line at 3.2 µs represents R1, and the short yellow line
that appears after the gap in the notched yellow line is R2. The times taken for R1 and R2 to
travel from the excitation point to the detection point in the metallic cylinder (Φ = 10 mm)
are about 3.2 µs and 7.4 µs, respectively. In the same signal, either R1 or R2 will always be
affected by microcracks.

2. There are two microcrack reflected waves in the same image, and as the metallic
cylinder rotates, the two reflected waves will gradually approach, overlap, and then
gradually move away. This is because the line source will simultaneously generate SAWs
propagating in two opposite directions. When the sample is rotated at a certain position,
two opposite paths of excitation pointing to the microcrack detection point will have the
same distance; it will appear that the two reflected waves arrive at the detection point
simultaneously, that is, the two reflected waves overlap and cross in the displacement
nephograms.

3. When the microcrack rotates between the excitation and detection points, R1 is
blocked. The signals received before and after R1 is blocked are shown in Figure 7. Before
being blocked, R1 and Rr can be observed from the waveform. After being blocked, the
amplitude of R1 is significantly reduced, the Rr cannot be observed, and R2 appears at 7.4 µs
(propagates counterclockwise). It should be noted that when the wavelength of the SAW is
greater than the depth of the microcrack, even if blocking occurs, some low-frequency SAW
can pass through the microcrack to reach the detection point. As shown in the notched
yellow line in Figure 6a,b, when the depth of the microcrack is small, the transmitted SAW
can still be observed at the notch. As the depth of the microcrack increases, the amplitude
of the transmitted SAW becomes smaller and disappears gradually.
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The surface microcrack is equivalent to a high-frequency filter. Some high-frequency
components with shorter wavelengths in the SAW cannot pass through the microcrack
and are reflected, while some low-frequency components with longer wavelengths can
pass through the microcrack smoothly. Therefore, the ultrasonic signal received before
being blocked is the entire R1 and the high-frequency reflected wave Rr. R2 has a long
propagation distance and cannot pass through the defect, so it is hard to detect. With
the rotation of the sample, the detection point and excitation point are on the opposite
side of the defect, which causes the sudden change in the ultrasonic signal, as shown in
Figure 7. The microcrack causes the high-frequency component of R1 to be blocked (the
low-frequency SAW passing through the microcrack is the TR); therefore, the amplitude of
R1 decreases obviously and the Rr disappears, and the amplitude of R2 increases sharply
after R1 is blocked.
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By using the B-scan image, the position of the microcrack can be easily determined.
Since the positions of the detection point and excitation point do not change during
the entire scanning process, the microcrack is located at the detection point when R1 is
weakened and R2 is enhanced in the displacement nephograms. When R1 is enhanced and
R2 is weakened, the microcrack is located at the excitation point.

3.3. Identification of the Surface Microcrack’s Depth

The wavelet transform can provide a “time–frequency” window that varies with the
frequency; it can specifically analyze a certain local area of the signal, which is suitable for
ultrasonic signals that are changing in both the time domain and frequency domain. In
order to identify the depth of the microcrack, the wavelet transform is used to analyze the
Rr or TR in the time–frequency domain [34]:

W(a, b) =
1√
a

∫ ∞

−∞
x(t)ψ

(
t− b

a

)
dt (3)

where a is the scale, which controls the expansion and contraction of the wavelet function, b
is the translation amount, which controls the translation of the wavelet function, t represents
time, W (a, b) is the inner product of the ultrasonic signal x(t) and the wavelet basis function
Ψ, and Ψ is the mother wavelet, with that used in this paper being the Morlet wavelet:

ψ(t) = exp(iω0t) exp
(
− t2

2

)
(4)

where ω0 is the center frequency.
The location of the microcrack is measured. In order to obtain the Rr and TR, the

microcrack is rotated clockwise and counterclockwise by 20◦ based on the detection point,
respectively. Figure 8 shows the time–frequency analysis results of the Rr when D has
values of 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm, respectively (the orientation of the
microcracks is along the radial). Since the center frequency of the SAW in this experiment
is about 3 MHz, and the velocity of the SAW on the steel surface is about 3000 m/s, the
wavelength of the SAW in this experiment is about 1 mm. When D is small (D = 0.2 mm),
the high-frequency part of the SAW is blocked by the microcrack and reflected back to the
detection point, which is Rr; its time–frequency analysis results are shown in Figure 8a.
When D gradually increases, more low-frequency components of SAW will be reflected.
From Figure 8b–e, it can be seen that the center frequency of the Rr gradually moves down.
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Figure 9 shows the time−frequency analysis results of the TR when the D values are
0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm, respectively. It can be seen that when
D is small, only a small part of the SAW of the high-frequency components is blocked,
and the center frequency of the TR is high. When D gradually increases, more and more
high-frequency components of the SAW are blocked, so it can be seen from Figure 9 that
the center frequency decreases with the increase in D, and only low-frequency components
can pass through the microcrack. By comparing Figures 8 and 9, it can be seen that when
D changes, the change in the frequency range of the TR is more obvious than that of the
Rr. This is because when the surface wave is reflected at the microcrack, there are not
only reflected surface waves, but also waveform conversion. Due to the influence of the
wave velocity, wavelength, and SNR ratio, it is difficult to distinguish these converted
waves from reflected surface waves. For surface waves passing through the microcrack,
since most converted waves propagate in the reflected direction, the transmitted waves
are less affected by converted waves, so the TR is more sensitive to changes in D than
the Rr [35]. According to this feature, the TR was selected for the characterization of the
microcrack’s depth.
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The purpose of this work is to provide a real-time reference for the rapid grinding
of microcracks on the surface of a metallic cylinder. When the position and depth of the
microcrack is determined, the surface of the metallic cylinder is ground with a grinding
wheel controlled by a mechanical arm. In order to avoid edges and corners after grinding,
the track of grinding is usually a curve composed of multiple curves [4], as shown by the
dotted line in Figure 10a.

In fact, the orientation of microcracks on the metallic cylinder surface is diverse, so it is
necessary to obtain the TR of microcracks with different orientations and depths by means
of simulation in order to establish an accurate model. However, there are two methods
used to define the depth of a microcrack. The first is the length of the microcrack itself, and
the second is the radial distance from the end of the microcrack to the metallic cylinder
surface (absolute depth), as shown in Figure 10b. In both methods, the orientation of the
microcrack is defined as the angle between the direction of the microcrack and the x-axis;
the angle is negative when the microcrack is on the left side of the x-axis, and the angle is
positive when the microcrack is on the right side of the x-axis.
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Figure 10. (a) Schematic diagram of metallic cylinder surface grinding. The short red line represents
the microcrack, and the dotted line represents the track of the grinding wheel. (b) Depth defined in
terms of the radial distance from the end of the microcrack to the surface of the metallic cylinder
(absolute depth). The microcrack is rotated to the position 20◦ counterclockwise from the detection
point, P represents the position of the microcrack, and T represents the point of tangency between the
microcrack and the circle in which the end of the microcrack is located. The line connecting P and

any point on
_
TT
′

has the same depth.

When the length of the microcrack is taken as D, the limit of the orientation angle is
the angle at which the end of the microcrack intersects with the metallic cylinder surface.
And when the absolute depth of the microcrack is taken as D, the limit of the orientation
angle is the tangent line between the microcrack and the circle at the end of the microcrack.
According to the geometric relationship of ∆TPO in Figure 10b, when D is at its largest, the
orientation angle range of the microcracks is the smallest. In this experiment, the maximum
depth of the microcracks is 1 mm, and the diameter of the metallic cylinder is 10 mm.
Therefore, the range of β is less than 53◦. Therefore, in order to compare the TR of the
two depth models at different depths and orientation angles, the range of β was chosen to
be from −50◦ to 50◦ (the smaller D, the larger the range of orientation angles that can be
compared together).

Figure 11 shows the simulation waveforms of the TR when D = 0.4 mm, as obtained
via two depth definition methods. It can be seen from Figure 11a that when the microcrack
length is constant and the orientation angle is changed, the amplitude of the TR changes
obviously; meanwhile, in Figure 11b, although the length of the microcrack changes, the
absolute depth remains constant, which results in a small variation in the amplitude of
the TR. In fact, the microcrack can be regarded as a low-pass filter, and the high-frequency
components in the SAW are reflected by the microcrack. Therefore, the absolute depth of
the microcrack is the key to affecting the TR waveform, and different orientation angles
will cause changes in the waveform conversion and propagation time.

For the surface grinding of the metallic cylinder, since the trajectory of the grinding
wheel is a smooth curve, instead of directly grinding the microcrack itself, the absolute
depth of the microcrack is more suitable for the grinding process compared to the microc-
rack length. This can not only avoid the influence of orientation on the grinding accuracy as
much as possible, but also provide a fast calculation method for microcracks and improve
production efficiency. Since the SAW sees a waveform conversion at the microcrack, and
the waveform of the TR is also affected by the orientation of the microcrack, the energy of
the signal x(t) is used as the basis for calculating the absolute depth of the microcrack, as

follows:E =
∫ t2

t1
[x(t)]

2
dt, where E is the signal energy, and t1~t2 is the time range of the TR.

Figure 12 shows the energy of each TR in Figure 11. The black curve represents the energy
of the TR when the microcrack length is constant, and the red curve represents the energy
of the TR when the absolute depth of the microcrack is constant. It can be seen that the
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fluctuation in the black curve is obviously larger than that of the red curve, which proves
that the prediction model established using the absolute depth has higher accuracy.
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microcrack length is constant, and the red curve represents the energy of the TR when the absolute
depth of the microcrack is constant.

In order to establish a model that can rapidly predict the absolute depth of microcracks,
the energy of the TR at absolute depths of 0.1 mm to 1.0 mm was calculated from the
simulation signals when the orientation of the microcracks was −50◦ to 50◦, as shown
in Figure 13. It can be seen from Figure 13 that the smaller the absolute depth of the
microcrack, the larger the deviation in the energy of the TR caused by the orientation is. But
when the absolute depth is small, the energy of the TR is more sensitive to the change in the
absolute depth. When the absolute depth of the microcrack is close to the wavelength of
the SAW, the deviation in the energy of the TR caused by the orientation becomes smaller,
and the energy of the TR becomes insensitive to the change in the absolute depth. When
the microcrack is deep enough, the TR will disappear. The energy of the Rayleigh wave
decays exponentially with depth [36]; therefore, the relationship between the energy E of
the TR and the absolute depth D of the microcrack can be expressed as follows:

E = A · exp(−D/B) + C (5)

where A, B, C are the fitting parameters. In Figure 13, the red curve is the fitting result of
the maximum values of E at different depths using Equation (5), and the black curve is
the fitting result of the minimum values of E at different depths. For the area between the
red and black curves, the greater the energy of the TR, the smaller the range of D. In the
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region of higher energy, the deviation of D can be less than 0.1 mm. When the energy of
the TR is small, affected by the orientation of the microcrack, the range of D is large, and
the deviation can reach 0.3 mm or even higher. For the actual detected laser ultrasonic
signal, affected by the signal-to-noise ratio, it is difficult to obtain a waveform similar to
the simulation and extract accurate signal characteristic parameters [20]. Therefore, when
grinding the microcrack, after obtaining the energy of the TR, the maximum value in the
range of D is selected in order to plan the grinding trajectory to ensure that the microcrack
is completely eliminated. Compared with the currently used ECT, LU can more easily
provide the range in the microcrack’s depth, so it can assist the robot arm to achieve more
accurate and rapid grinding trajectory planning.
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Figure 13. Fitting curve of the microcrack’s absolute depth and energy of the TR. For the red curve
(R-square = 0.99398), the fitting parameters are A1 = 357.55, B1 = 0.23 and C1 = 3.14. For the black
curve (R-square = 0.9972), the fitting parameters are A2 = 395.23, B2 = 0.26 and C2 = 9.84.

4. Conclusions

In this paper, a method for the characterization of metallic cylinder surface microcracks
based on laser ultrasonic is proposed. Since the laser-induced ultrasound is broadband,
the polarity of the SAW will change due to the phase lag during the propagation of the
cylindrical surface. The laser ultrasonic signal is unstable during the detection process,
so the angle at which the polarity of the SAW is completely reversed is selected as the
detection point in order improve the consistency of the detected signal and the accuracy
of the modeling. A laser ultrasonic automatic detection system is established in order to
obtain signals, and the B-scan image is drawn to determine the location of the microcrack.

In order to establish model that can characterize the depth of the microcrack, time–
frequency analysis was used to investigate the changes in the reflection SAW (Rr) and
transmission SAW (TR) at different microcrack depths. The results show that the TR is
more sensitive to the change in the microcrack depth. To improve the robustness of the
depth prediction model, the energy of the TR at different microcrack orientation angles
was analyzed when the microcrack length or absolute depth was constant. When the
depth is defined as the absolute depth of the microcrack, not only does the orientation
of the microcrack have less influence on the energy of the TR, but it is also more suitable
for the trajectory planning of the grinding wheel. Finally, in the established microcrack
depth prediction model, the larger the TR, the smaller the depth range and the higher
the prediction accuracy; the smaller the TR, the larger the depth prediction range. The
upper limit of the depth range needs to be selected during the grinding process to ensure
that the microcracks are completely eliminated. The method proposed in this paper can
simultaneously perform positioning and quantitative analysis on the surface microcracks
of metallic cylinders, and has the characteristics of visualization and a high detection
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efficiency, which is of great significance to the subsequent process of microcrack grinding
during production.
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