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Abstract: Lead halide perovskite nanoplatelets (NPls) attract significant attention due to their excep-
tional and tunable optical properties. Doping is a versatile strategy for modifying and improving the
optical properties of colloidal nanostructures. However, the protocols for B-site doping have been
rarely reported for 2D perovskite NPls. In this work, we investigated the post-synthetic treatment
of CsPbBr3 NPls with different Cd2+ sources. We show that the interplay between Cd2+ precursor,
NPl concentrations, and ligands determines the kinetics of the doping process. Optimization of the
treatment allows for the boosting of linear and nonlinear optical properties of CsPbBr3 NPls via dop-
ing or/and surface passivation. At a moderate doping level, both the photoluminescence quantum
yield and two-photon absorption cross section increase dramatically. The developed protocols of
post-synthetic treatment with Cd2+ facilitate further utilization of perovskite NPls in nonlinear optics,
photonics, and lightning.

Keywords: perovskite; nanoplatelets; doping; photoluminescence; two-photon absorption

1. Introduction

Lead halide perovskite nanoplatelets (NPls) are an emerging class of highly absorbing
and strongly emitting optoelectronic nanomaterials [1,2]. Thanks to the quantum con-
finement effect, the ultranarrow photoluminescence (PL) band may be easily tuned by
precise control of NPl thickness [3,4]. Different synthetic approaches were developed to
synthesize both organic–inorganic hybrid and all-inorganic lead halide perovskite NPls,
including hot-injection, ligand-assisted reprecipitation (LARP), ultrasonication, microwave-
assisted, and solvothermal methods [5–10]. Pure emission color, high exciton binding
energy, and uniform morphology make these nanostructures promising for light-emitting
diodes (LEDs) [2,11,12]. It should be noted that 2D perovskite nanostructures attract
much attention as candidates for numerous applications in the field of nonlinear optics
and photonics [13,14].

B-site doping is a promising tool to improve both the optical properties and stability
of lead halide perovskites. For instance, a partial substitution of Pb2+ atoms in CsPbI3
nanocrystals (NCs) with Sr2+ and Zn2+ aimed for the stabilization of a cubic α-phase [15,16].
Thermal and air stability of perovskite NCs were recently improved through Mn2+ and Cu2+

doping [17,18]. Interestingly, doping (alloying) the lead-free CsSnI3 perovskite with Pb2+

brings similar results [19]. Targeted doping has the most noticeable effect on the perovskite
NCs photoluminescent (PL) properties. Particularly, the improvement of PL quantum
yield and NC stability is essential for utilization of perovskite emitters in the ultraviolet-
blue spectral range [20,21]. Another unique opportunity provided by B-site doping is a
realization of a fundamentally different emission spectrum due to the introduction of such
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atoms as Mn2+, Yb3+, Er3+, etc. [22–24]. This strategy is useful both for obtaining NIR
emitters and nanomaterials with a broad PL spectrum or with multiple emission bands.
The numerous listed improvements that can be obtained through B-site doping have made
this strategy widely researched. As a result, many effective strategies and protocols have
emerged for obtaining doped NCs, both during synthesis and through post-synthetic
processing [25–27].

In striking contrast, B-site doping has been rarely reported for 2D perovskite NPls and
has been mainly focused on the introduction of manganese ions [28–31]. The peculiarities of
the NPls’ growth, their ultrathin nature, and the increasing impact of a surface put forward
fundamentally new requirements for the doping protocols development. Interestingly, it
has been recently shown that doping may be utilized to control the CsPbBr3 NPls’ growth
kinetics [32]. CsPbBr3 NPls can be considered as a perspective nanomaterial that may fill
the perovskite-based LEDs low efficiency gap in the blue spectral region [33,34]. Therefore,
the issues of improving their PL quantum yield, stability, and further PL band shift to the
UV region of the spectrum are relevant. In the example of CsPbBr3 NCs, it was shown
that the listed issues can be solved by doping with cadmium ions. Van der Stam et al.
showed for the first time that post-synthetic treatment of CsPbBr3 NCs with Cd2+ precursor
induces a blue shift of their absorption and PL bands due to the lattice contraction [35].
Xie et al. later revealed that treatment of CsPbBr3 NCs with CdX2 salts enhances their PL
quantum yield [36]. We have recently presented that Cd2+ doping carried out during NCs
synthesis leads not only to a change in the linear optical properties but also to a significant
increase in the nonlinear optical response [37]. Zhao et al. demonstrated the performance
of a white LED utilizing Cd2+-doped CsPbBr3 NCs grown inside a borosilicate glass as a
green emitter [38].

These achievements motivated us to develop Cd2+ doping methods for CsPbBr3 NPls,
aiming for their further utilization in nonlinear optics, optoelectronics, and lightning.
In the current study, we demonstrate that the treatment of CsPbBr3 NPls with different
Cd2+ precursors is an efficient tool to boost their linear and nonlinear optical properties via
doping or/and surface passivation. We show that the interplay between the Cd2+ precursor,
NPl concentrations, and ligands determines the doping process kinetics. We also show that
the ultrathin nature of the NPls imposes restrictions on the doping level, and the highest
quantum yield and the strongest nonlinear optical response can be achieved with a small
number of inserted Cd2+ ions.

2. Materials and Methods

1-Octadecene (ODE, 90%, Merck, Rahway, NJ, USA), oleic acid (OA, 90%, Sigma-
Aldrich), oleylamine (OlAm, 70%, Sigma-Aldrich, Burlington, MA, USA), octylamine
(OctAm, 99%, Sigma-Aldrich), lead(II) bromide (PbBr2, ≥99.999%, Sigma-Aldrich), cesium
carbonate (Cs2CO3, 99.9%, Sigma-Aldrich), cadmium(II) bromide tetrahydrate (CdBr2·H2O,
98%, Sigma-Aldrich), cadmium(II) acetate (Cd(OCOCH3)2, anhydrous, 99.995%, Sigma-
Aldrich), and toluene (Vekton, Saint-Petersburg, Russia) were used as received without
further purification.

CsPbBr3 NPls were synthesized and purified according to [31,39]. To obtain CdBr2
precursor, we added 18 mg CdBr2 to 2 mL of toluene with 15 µL of OlAm, degassed for
3 h at 80 ◦C, and then left stirred at 70 ◦C overnight. To obtain Cd(OCOCH3)2 precursor,
we added 23 mg Cd(OCOCH3)2 to 2 mL of toluene with 15 µL of OlAm, stirred for 3 h at
100 ◦C, and then left stirred at 70 ◦C overnight.

Absorption and PL spectra were obtained by Shimadzu UV-3600 (Shimadzu Corpo-
ration, Kyoto, Japan) and Jasco FP-8200 (JASCO Deutschland GmbH, Pfungstadt, Ger-
many), respectively. MicroTime 100 microscope (PicoQuant, Berlin, Germany) was used to
record PL kinetics. 2PA-excited PL was investigated by a Coherent Astrella-USP ultrafast
Ti:Sapphire amplifier (Coherent, Inc., Santa Clara, CA, USA) with a peak center at 800 nm,
a pulse width of ~35 fs, 1 kHz repetition rate, and M266-IV (Standa Ltd., Vilnius, Lithuania)
automated spectrograph. Escalab 250Xi (Thermo Fisher Scientific, Waltham, MA, USA) was
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used for XPS analysis. Zeiss Libra 200FE (Zeiss, Oberkochen, Germany) microscope and
Solver Pro-M (NT-MDT, Moscow, Russia) microscope were used for transmission electron
and atomic force microscopies, respectively.

3. Results
3.1. CsPbBr3 Nanoplatelets

Figure 1a demonstrates the absorption and PL spectra of the synthesized CsPbBr3
NPls. The spectra show typical features of the NPls caused by 2D confinement, namely
strong exciton absorption and a very narrow (FWHM = 16 nm) PL band. The PL quantum
yield (PL QY) reached 19% after the synthesis and gradually decreased over time of
storage (see Figure S1, Supplementary Materials). The morphology of the CsPbBr3 NPls
was revealed using atomic force microscopy (AFM) and high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM). An AFM image of the NPls
deposited onto a mica substrate is demonstrated in Figure 1b, while Figure 1c shows a
corresponding height profile. The thickness of the NPLs was determined to be 2.8 nm,
which was further confirmed by the analysis of vertically stacked NPls in HAADF-STEM
images (Figure 1d and Figure S2, Supplementary Materials). The analysis of the lateral
dimensions of ~150 NPls allowed us to estimate the average size of their side length, which
is 17.5 ± 5.0 nm (see Figure S3, Supplementary Materials). Chemical composition of the
synthesized NPls was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS
survey spectrum is demonstrated in Figure S4, and Figure 1e reveals the high-resolution
XPS spectra for the Cs, Pb, and Br elements. The estimated positions of the corresponding
peaks agree well with the literature data [40].
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Figure 1. (a) Absorption and PL spectra of CsPbBr3 NPls. The inset shows a 3D AFM image. (b) AFM
image of CsPbBr3 NPls and (c) the corresponding height profile. (d) HAADF-STEM image of CsPbBr3

NPls. (e) XPS spectra for Cs, Pb, and Br elements.

3.2. Doping with CdBr2

In the case of using cadmium bromide as a Cd2+ precursor, the doping efficiency
depends on the amount of added precursor, the amount and concentration of perovskite
NPls, and the ligand density. The gradual process of doping can be directly observed
over time for nonconcentrated solutions, with the doping rate being determined by the
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amount of precursor. Figure 2a,b shows the evolution of absorption and PL spectra of the
NPls when 25 µL of CdBr2 precursor was added to 3 mL of NPl toluene solution with
0.15 optical density at 400 nm (NPl concentration is ~10−8 M). The dynamics of the PL
and absorption peak positions over time are shown in Figure 2c. The absorption spectra
reveal gradual blue shifts, indicating the bandgap increase. This widening of the bandgap
is due to a lattice contraction induced by the progressive replacement of a Pb2+ cation with
a Cd2+ cation with a smaller ionic radius [35]. In general, the PL peak position follows
this trend. Figure S5 shows the evolution of PL peak position (in eV) and FWHM under
Cd2+ doping. The PL maximum gradually shifts by 117 meV to the high-energy region of
the spectrum, indicating a significant increase in the PL energy. It is worth noting that the
insertion of Cd2+ ions is accompanied by a slight increase in Stokes shift, which originates
from a stronger shift of an absorption band as compared to a PL band. We may speculate
that the increase in Stokes shift is attributed to the lattice contraction, since an absorption
spectrum is more sensitive to compression [41].
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Blue circles in Figure 2c show the evolution of relative PL intensity (determined as
an integrated PL intensity divided by an optical density at the excitation wavelength and
normalized to the value obtained for the initial solution). Immediately after the addition of
the Cd2+ precursor, a significant growth in PL efficiency occurs, which may be attributed
to the efficient surface passivation. It has recently been proven that the passivation of
CsPbX3 perovskite NCs with CdX2 leads to the PL QY enhancement due to the filling of
the Pb−X vacancies with Cd2+ and X− ions [36]. During further Cd2+ doping, relative PL
intensity decreases gradually and reaches a plateau at about 0.5 from its original value. In
order to confirm that cadmium ions are incorporated into the NPls, we performed an XPS
analysis for a sample with a PL peak position at a wavelength of 445 nm. Figure 3a shows
the spectrum for Cd 3d peaks, and the estimated peak positions of 405.3 ± 0.1 eV and
412.1 ± 0.1 eV for the Cd 3d5/2 and Cd 3d3/2, respectively, are in good agreement with
data obtained in [37,38]. The NPls’ chemical composition CsPb0.84Cd0.16Br3 was calculated
using the Cd 3d5/2 spectrum.
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doping, as well as during seven days’ storage.

It was found that the ligand concentration in the precursor solution significantly affects
the NPl doping. Increasing the OlAm amount in the precursor by a factor of 15 considerably
inhibits doping; however, the PL QY significantly grows in this case. Figure 3b shows
the PL spectra of NPls after adding various amounts of the cadmium precursor with the
increased OlAm amount. The PL QY reaches an impressive value of 56%, which, however,
is accompanied by only a slight shift of the PL band. A similar situation is observed when
OlAm is replaced by octylamine in the precursor. Figure 3c demonstrates the NPls’ PL
spectra after adding 20 µL of the precursor with octylamine. Similarly to the procedure
with OlAm, we observe a significant increase in the PL intensity, which persists for at least
seven days’ storage.

Alternatively, the doping was tested on the solutions with NPl concentration increased
by ten times (See Figure S6, Supplementary Materials). In this case, a growth in the PL
QY is also observed, while there is no deterioration in the PL properties of the NPls with
an increase in the Cd2+ amount, as was observed for diluted solutions (Figure 2c). It
should also be noted that in this case, it is possible to achieve a smaller shift of the PL
band position, indicating less Cd2+ doping. The interpretation of the results obtained
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under various doping regimes is in agreement with existing hypotheses, according to
which doping occurs due to the introduction of cadmium bromide as a whole unit [35].
Upon dilution, the decrease in PL QY and distortion of the PL spectrum are observed (see
Figure S7, Supplementary Materials). Dilution of the NPl solution promotes the formation
of a larger number of surface defects, including halide vacancies, which can be filled then
with cadmium bromide, followed by the possible migration of cations. Moreover, the NPls’
ultrathin nature significantly contributes to doping. The introduction of a large number of
ions with a smaller ionic radius adds to the destabilization of the NPl structure and, as a
consequence, to a decrease in PL efficiency. On the contrary, at a low doping level surface
passivation occurs at the same time, leading to a significant increase in PL QY.

3.3. Doping with Cd(OCOCH3)2

Doping was additionally realized using Cd(OCOCH3)2 as a Cd2+ source. In this case,
1 µL of Cd(OCOCH3)2 was mixed with 1 µL of OA, 1 µL OlAm, and 10 µL of toluene for the
further use. Then, a specified amount (1–13 µL) of this precursor was added to the colloidal
solution of NPls. As shown in Figure 4a, increasing the amount of an added precursor
causes a smooth shift of the PL band to the blue region of the spectrum, which indicates a
gradual increase in the number of introduced cadmium ions. The shift is accompanied by
growth in relative PL intensity, as shown in the inset of Figure 4a.
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Figure 4. (a) PL spectra of Cd2+-doped NPls with various amounts of Cd(OCOCH3)2 precursor
solution. The inset shows the dependence of PL QY on the PL peak position. (b) Relative PL
intensity of the NPls doped with Cd(OCOCH3)2 (PL peak position at 455 nm) after the addition of
various amounts of CdBr2. (c) PL decay curves taken for the undoped NPls (black line), doped with
Cd(OCOCH3)2 (red line), and CdBr2 treated after Cd(OCOCH3)2 doping (blue line).

It seems important to notice that the NPls doped with the use of Cd(OCOCH3)2 can be
further passivated with CdBr2. As an example, Cd2+-doped NPls with a PL peak position
at 452 nm were treated with a successively increasing amount of CdBr2 precursor. Figure 4b
demonstrates the dependence of the NPl solution’s relative PL intensity on the amount
of CdBr2 precursor. Additional treatment of the Cd2+-doped NPls with CdBr2 allows for
further improvement of their luminescent properties due to the extra passivation of their
surface, which is confirmed by studying the PL kinetics (see Figure 4c). While doping with
Cd(OCOCH3)2 has a little effect on PL kinetics (intensity-weighted average PL lifetime
increases from 3.5 ns to 3.6 ns), further treatment with CdBr2 changes the shape of the PL
decay curve and induces a pronounced growth of an average PL lifetime up to 4.6 ns. Thus,
a double-step treatment with different Cd2+ precursors allows for both PL wavelength
tuning and surface passivation.
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We may underline the following observations to summarize the results of the proposed
CsPbBr3 NPls doping protocols with Cd2+ ions. Too high a rate of doping is harmful to NPls’
structural stability and can be achieved through the use of CdBr2 in diluted solution. Using
highly concentrated NPl solutions or introducing additional ligands allows for slowing
down the doping rate and keeping a strong surface passivation effect. In this case, however,
the wavelength tunability is insufficient. The doping with Cd(OCOCH3)2 is a more suitable
choice for tuning the position of the NPls emission. Further passivation may be achieved
via a second stage with CdBr2, providing a spectral shift, a high PL quantum yield, and
stability, as listed in Table 1.

Table 1. The summary of CsPbBr3 NPls doping with Cd2+.

Doping Type Doping Rate PL Peak Position Tuning Stability Passivation

CdBr2, diluted High Yes Low Moderate

CdBr2, concentrated Low No High High

CdBr2, ligands Low No High High

Cd(OCOCH3)2 Moderate Yes Moderate Moderate

Double-step Moderate Yes High High

3.4. Two-Photon-Induced Photoluminescence

To investigate the influence of doping with Cd(OCOCH3)2 on the NPls’ nonlinear
optical responses, we studied their PL when excited via the two-photon absorption (2PA)
process. Figure 5a demonstrates the log–log plots of the integrated PL intensity vs. ex-
citation power. The dependences obtained for both the doped and the parent samples
are well-described by a linear function with a slope close to 2, which corresponds to a
2PA-excited emission. The 2PA absorption cross section is an important figure of merit to
compare the nonlinear optical processes in different materials. 2PA cross sections for the
parent and Cd2+-doped NPls were calculated using fluorescein as a standard [42]. Figure 5b
shows the dependence of the 2PA absorption cross section on the emission peak position
for two batches of samples. One can see that NPls possessing the PL maximum in the
range 455–460 nm demonstrate the strongest nonlinear absorption. Assuming a linear
dependence of the PL peak position on the doping ratio [35], we can conclude that the
replacement of 4−8% of the Pb2+ ions with Cd2+ ions in a B-site position allows for the
achievement of superior nonlinear optical properties. Such a small fraction of doped Cd2+

ions induces a strong enhancement (more than 2.5 times) of nonlinear absorption. This
observation is in a good agreement with experimental and theoretical studies of doped
perovskite nanocrystals [35,37,43]. Ahmed et al. recently concluded that the insertion
of even a small fraction of doping ions results in the local lattice periodicity breaking,
which leads to a charge carrier localization [43]. At a higher level of doping, 2PA starts to
decline, which may be attributed to the structural instability of the doped NPls under the
intense laser radiation. Indeed, the 2PA-excited PL spectrum of the slightly doped NPls is
well-superimposed on the one-photon-excited PL spectrum (see Figure S8, Supplementary
Materials). On the contrary, for heavily doped NPls, a shoulder appears on the low-energy
side in the spectrum of 2PA-excited PL, which can be associated with the relaxation through
the emerging surface and structural defects.
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4. Conclusions

To sum up, we have developed the methods for the CsPbBr3 NPls post-synthetic
doping with Cd2+ ions. We found that the interplay between Cd2+ precursor, NPl con-
centrations, and ligands determines the kinetics of the doping process. We showed that
a careful choice of doping conditions allows for the achievement of significant improve-
ment in NPl optical properties. Additionally, we developed a two-step doping protocol
that allows for fine emission wavelength tuning, boosts PL quantum yield, and preserves
the NPls’ stability. We also demonstrated that the replacement of 4–8% of the Pb2+ ions
with Cd2+ ions in a B-site position induces a strong enhancement of the nonlinear optical
response; particularly, the two-photon absorption cross section is increased by 2.5 times.
We showed that the doping level is limited by the structural instability of ultrathin NPls
occurring due to the introduction of a large number of dopants with a smaller ionic radius.
These findings reveal more opportunities for the use of lead halide NPls in optoelectronic
devices, as well as for the development of methods for doping perovskite nanostructures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15217676/s1, Figure S1: CsPbBr3 NPls PL QY shift over
time of storage; Figure S2: HAADF-STEM images of the CsPbBr3 NPls; Figure S3: An analysis of
lateral dimensions of the CsPbBr3 NPls; Figure S4: The XPS survey obtained for the CsPbBr3 NPls;
Figure S5: Evolution of PL peak position and FWHM under Cd2+ doping. Figure S6: The shift
of PL spectra of CsPbBr3 NPls upon Cd2+ doping in concentrated solutions. The inset shows the
relative PL intensity of the solutions obtained using different CdBr2 precursor amount; Figure S7:
PL spectra of CsPbBr3 NPl solutions with optical densities of 0.15 and 0.03 (at 400 nm). The inset
shows the normalized dependence of PL QY on the optical density of the NPl solution; Figure S8: PL
spectra for two Cd2+-doped samples with a different Cd2+ amount (emission wavelengths are 447 nm

https://www.mdpi.com/article/10.3390/ma15217676/s1
https://www.mdpi.com/article/10.3390/ma15217676/s1
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and 45 nm, respectively) obtained under one-photon absorption (1PA) and two-photon absorption
(2PA) excitation.
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