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Abstract

The development of fast, cheap and reli-

able methods to determine seroconver-

sion against infectious agents is of great

practical importance. In the context of

the COVID-19 pandemic, an important

issue is to study the rate of formation

of the immune layer in the population of

different regions, as well as the study of

the formation of post-vaccination immunity in individuals after vaccination.

Currently, the main method for this kind of research is enzyme immunoassay

(ELISA, enzyme-linked immunosorbent assay). This technique is sufficiently

sensitive and specific, but it requires significant time and material costs. We

investigated the applicability of attenuated total reflection (ATR) Fourier trans-

form infrared (FTIR) spectroscopy associated with machine learning in blood

plasma to detect seroconversion against SARS-CoV-2. The study included sam-

ples of 60 patients. Clear spectral differences in plasma samples from recovered

COVID-19 patients and conditionally healthy donors were identified using

multivariate and statistical analysis. The results showed that ATR-FTIR spec-

troscopy, combined with principal components analysis (PCA) and linear dis-

criminant analysis (LDA) or artificial neural network (ANN), made it possible

Abbreviations: Ab, antibody; ANN, artificial neural networks;
ATR-FTIR, attenuated total reflection–Fourier transform infrared spectroscopy; IgG, immunoglobulin G; PCA-LDA, principal component analysis–
linear discriminant analysis.
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to efficiently identify specimens from recovered COVID-19 patients. We

built classification models based on PCA associated with LDA and ANN.

Our analysis led to 87% accuracy for PCA-LDA model and 91% accuracy for

ANN, respectively. Based on this proof-of-concept study, we believe this method

could offer a simple, label-free, cost-effective tool for detecting seroconversion

against SARS-CoV-2. This approach could be used as an alternative to ELISA.

KEYWORD S

ANN, ATR-FTIR spectroscopy, chemometric, COVID-19, PCA-LDA, plasma, sepsis

1 | INTRODUCTION

More than one and a half years have passed since the
beginning of the COVID-19 epidemic that arose at
the end of December 2019 in Wuhan, Hubei province
(China). During this time, the epidemic turned into a
pandemic and covered all continents, except for Antarc-
tica. By May 31, 2021, the cumulative number of cases
reported globally by August 17, 2021 is now over 206 mil-
lion and the cumulative number of deaths is almost 4.4
million [1].

The COVID-19 epidemic has brought dramatic
changes to humanity's lifestyles and caused enormous
economic harm. The etiological agent of the disease is
the previously unknown beta-coronavirus SARS-CoV-2,
which was detected in biological samples from patients
with severe pneumonia in the Chinese city of Wuhan in
December 2019. SARS-CoV-2 belongs to the sarbecovirus
subgenus and is the seventh known coronavirus capable
of infecting humans [2].

COVID-19 is characterized by different variants of the
course of the disease, from asymptomatic carriage to
severe forms of pneumonia with the development of
respiratory distress syndrome and “cytokine storm” [3].
The absence of symptoms significantly complicates the
identification of infection, as well as understanding
which part of the population has already been ill and
carries the risk of spreading the infection [4–7].

To meet the needs for laboratory diagnostics of
COVID-19 in different countries, a large number of
diagnostic tests have been developed in a short time. At
the same time, first of all, tests were developed to
detect the disease in the acute phase. As a rule, these
were molecular techniques based on reverse transcrip-
tion polymerase chain reaction (RT-qPCR) [8–10] or
based on isothermal amplification (RT-LAMP) [11], as
well as RDT (rapid diagnostic tests) based on lateral
immunochromatography to detect the SARS-CoV-2 anti-
gen [12, 13]. Such diagnostic techniques make it possi-
ble to detect the disease at an early stage, which is

important both from the point of view of diagnosis and
from the point of view of organizing anti-epidemic
measures.

In addition, to assess the presence of immune
responses, both during illness and after clinical recovery,
many tests have been developed to detect immunoglobu-
lins of various classes against the SARS-CoV-2 virus.
These tests are implemented mainly in the ELISA format
and are widely used at present [14]. Given the fact that a
significant part of the population has already been ill
with COVID-19, or has been vaccinated, there are prob-
lems associated with assessing population immunity, its
dynamics, evaluating the effectiveness of post-vaccination
immunity, etc. To solve these problems, it is necessary to
conduct large-scale research, which requires the involve-
ment of significant material and human resources. There-
fore, the development of alternative methods of mass
testing for the presence of seroconversion to SARS-CoV-2
is an urgent task.

There are many attempts to apply Fourier transform
infrared spectroscopy (FTIR) as a fast, reliable and afford-
able screening for a variety of diseases. FTIR spectros-
copy, combined with various data processing techniques,
has been widely used in many cancer research [15–17].
Nowadays, modern computing tools make it possible to
process huge amounts of information in a matter of
minutes. The use of machine learning and chemometric
methods in the processing of medical data allows you to
obtain important information without significant costs
and resource use.

Attenuated total reflectance FTIR (ATR) spectroscopy
represents a complementary approach for clinical appli-
cations [18] over other infrared approaches [19]. This
mode gives high-quality results with better spectral repro-
ducibility when using liquid samples [20]. Thus, ATR-FTIR
spectroscopy of biological fluids has attracted a lot of
attention from the scientific community for the rapid
detection of various health conditions. Zhang et al. [21]
showed that ATR-FTIR spectroscopy can be a primary
diagnostic tool for patients in the acute phase COVID-19
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as a supplement to in-use techniques. The paper [22]
shows the potential of ATR-FTIR to classify the severity
of COVID-19 disease depending on concomitant diseases.
In addition, chemometric processing methods in combi-
nation with ATR-FTIR are used to develop diagnostic
methods based on the detection of biological markers of
the virus in saliva [23, 24, 25, 26]. The sensitivity, specific-
ity and accuracy of the developed models based on FTIR
and Raman spectral data for determining the presence of
the SARS-CoV-2 virus and determining the severity of
COVID-19 disease is very promising.

However, due to the fact that viral samples are rapidly
degraded in blood and saliva samples, the application of
ATR-FTIR spectroscopy to the analysis of viral samples
in a viral transport medium is an extremely relevant
research. In [27] FTIR spectroscopy was proposed as a
fast and reagent-free screening method for the detection
of SARS-CoV-2 in RNA extracts. Using the multivariate
analysis of IR spectra, the authors managed to achieve
the accuracy, sensitivity, and specificity of the analysis of
97.8%, 97%, and 98.3%, respectively, while testing time
after RNA isolation was reduced from hours to minutes.

The article [28] investigated the immunological
response to the SARS-Cov-2 vaccine using IR spectros-
copy. This research aimed to analyze and compare FTIR
spectra of vaccinated people with a positive or negative
real-time quantitative RT-qPCR test, evaluating the
immunoglobulin and cytokine content as an immunolog-
ical response through FTIR spectroscopy. The work
shows that it was possible to detect biochemical changes
through FTIR spectroscopy associated with COVID-19
immune response in vaccinated people, once IgG, IgA,
IgM, as well as different cytokines, such as IFN-γ, TNF-α,
IL-1 β, IL-6 and IL-10, were detected.

In our article, we talk about the developed method for
the rapid detection of recovered COVID-19 patients using
IR spectroscopy. The spectral differences between COVID-
19 and healthy controls and the potential spectral markers
were identified by multivariate and statistical analysis.

2 | EXPERIMENTAL SECTION

2.1 | Sample collection

The work was carried out as part of a project to assess popu-
lation immunity to SARS-CoV-2 in the population of the
Russian Federation, considering the protocol recommended
by the WHO. The study was conducted according to the
guidelines of the Declaration of Helsinki and approved by
the Institutional Ethics Committee of St. Petersburg Pasteur
Institute (protocol No 64, May 26, 2020). Before the start of
the study, all participants or their legal representatives

familiarized themselves with the purpose and methodology
of the study and signed an informed consent. The selection
of volunteers for the study was carried out by the method of
questionnaires and random sampling [29].

2.2 | Sample preparation and ATR-FTIR
spectroscopy

Volunteers' blood samples were taken into vacutainers with
EDTA and processed by centrifugation (3000g for 10 min).
Plasma was separated from cellular elements, transferred
into plastic tubes, and stored at �80�C until analysis. The
content of antibodies to SARS-CoV-2 was determined using
the Enzyme immunoassay for the determination of IgG
antibodies to SARS-Coronavirus 2 in human serum and
plasma GA CoV-2 IgG (GA generic assay GmbH,
Germany). The results were taken into account by a quali-
tative method and were considered positive if the cut-off
level was exceeded. To study the method of IR spectroscopy
have been selected for “IgG+” 30 samples from volunteers
who recover COVID-19, and 30 samples from “IgG�” vol-
unteers without a history COVID-19. In addition, to assess
the specificity of the developed technique in relation to the
systemic inflammatory response, 40 plasma samples from
persons with sepsis as complications of the treatment of
oncohematological diseases, collected in 2016–2018, were
also studied. Samples were used that were obtained within
the interval of 0–3 days from the diagnosis of sepsis. The
diagnosis was established based on bacteriological confir-
mation of bacteremia and clinical diagnosis of sepsis in
accordance with the International Guidelines for Manage-
ment of Sepsis and Septic Shock 2016 [30].

Before the measurements of the plasma, samples were
thawed at 25�C. Each sample was measured three times on
a Bruker Tensor 37 FTIR spectrometer using an ATR
attachment with a diamond-coated zinc selenide crystal
with a resolution of 2 cm�1. Thirty-two scans were accumu-
lated per spectrum. The ATR detection crystal was cleaned
with 96% v/v ethanol and background spectra were
acquired before every acquisition. For each measurement,
an aliquot of 10 μL plasma sample was transferred onto the
ATR crystal and allowed to dry under mild airflow at room
temperature. It took about 10 min for the samples to dry
completely. The thickness of the dried blood plasma sample
on the ATR crystal was approximately 20 micrometers. The
spectra were recorded in the range from 4000 to 600 cm�1.

2.3 | Multivariate and statistical analysis

The measurements were performed in triplicate for each
sample and each replicate was included in ML algorithms.
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Before analyzing the data, the baseline was corrected for
the raw spectral data using the concave rubberband proce-
dure in the OPUS software. Then all spectra were vector
normalized. The second derivative of infrared spectra was
calculated from the normalized non-smoothed spectra
(Figure S1). The spectral region of second derivative of
FTIR spectra 1700–900 cm�1 was chosen and cross-
validation performed using the LOOCV algorithm. In all
cases, Savitzky–Golay smoothing (smoothing point 13)
(Figure S2), with standard normal variate normalization
and mean centering were used for preprocessing. The data
were organized in such a way that the samples were
divided into training (65%) and test (35%) sets.

Statistical processing of the spectra was carried out in
the OriginPro 2019 program using the one-way analysis
of variance (ANOVA) followed by Tukey post hoc test
was conducted to verify the significance of the selected
spectral markers. The data are expressed as means with
standard deviations (SD). The level of statistical signifi-
cance considered p < 0.05. Data analysis was performed
in The Unscrambler 9.7 (CAMO software) and Python
environment using Scikit-learn library [31, 32].

Several algorithms for feature extraction/selection
and classification were tested to distinguish samples from
healthy donors, COVID-recovered, and patients with sep-
sis. In order to effectively combat the “The Curse of

Dimensionality” [32, 33, 34], principal component analy-
sis was used as input variables for algorithms: linear dis-
criminant analysis (LDA), support vector machines
(SVM) and the K-nearest neighbors method, multi-layer
perceptron classifier (MLP), random forest classifier,
AdaBoost classifier.

2.4 | Quality performance

The accuracy, sensitivity, specificity, F-score and G-score
were calculated in the test set to evaluate the model's
classification performances. The accuracy represents the
total number of samples correctly classified considering
true and false negatives. The sensitivity is the proportion
of positive samples (i.e., covered COVID-19 or patients
with sepsis) correctly classified. The specificity represents
the proportion of negative samples (i.e., healthy unin-
fected controls) correctly classified. The F-score measures
the overall classification performance considering imbal-
anced data, and the G-score measures the overall classifi-
cation performance not accounting for class sizes [35].
The equations to calculate these parameters are shown in
Table 1.

3 | RESULTS AND DISCUSSION

3.1 | Comparison of blood plasma from
recovered COVID-19 patients with control
plasma samples

Blood plasma consists of more than 90% by volume of
water. It is known that plasma consists of proteins
(including fibrinogen), cholesterol, glucose, urea, triglyc-
erides and other more dilute compounds, all of which
can be recorded in spectra. However, only components
with a higher content can be identified in the spectra and

TABLE 1 Equations to calculate the classification quality

parameters.

Parameter Equation

Accuracy (AC) (%) TPþTN
TPþFpþTNþFN�100

Sensitivity (SENS) (recall) (%) TP
TPþFN�100

Specificity (SPEC) (precision) (%) TN
TPþFP�100

F-score (%) 2�SENS�SPEC
SENSþSPEC

G-score (%)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SENSþSPEC
p

Abbreviations: FN, negative; FP, positive; TN, negative; TP, true positive.

FIGURE 1 Average IR spectra of

the blood plasma group with

antibodies to SARS-CoV-2 (IgG+)

and without antibodies to SARS-

CoV-2 (IgG�) and their standard

deviation.
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provide useful information. To obtain better FTIR spectra
of the dissolved proteins and other components, plasma
samples have been dried on ATR crystal.

Averaged spectra minimize the effect of individual
differences and are therefore more representative.
Figure 1 shows the averaged (pre-processed) FTIR spectra
of plasma samples from groups with antibodies to SARS-
CoV-2 (IgG+) and without antibodies (IgG�), which are
very similar overall and comparable to previous reports of
FTIR of plasma and serum [36, 37]. The spectra are very
similar compared to other plasma samples reported and

discussed before in the literature. Therefore, the wave-
number assignment has been adapted from previous
studies (Table 2) [38].

The average spectra from both donors' groups appear
very similar, thus, for a more detailed consideration of
the differences, difference spectra are usually calculated.
Figure 2 shows the difference spectrum that was
obtained by subtracting the average IR spectrum of the
SARS-CoV-2 antibody group (IgG+-group) from the aver-
age spectrum of the SARS-CoV-2 antibody-free group
(gG�-group). The area of the graph above zero shows

TABLE 2 Band assignments and statistical comparisons between recovered COVID-19 patients and control spectra in band locations

and relative absorbance.

Absorption band position (cm�1) Intensity

Absorption band Control
Recovered COVID-19
patients p Control

Recovered COVID-19
patients p

OH 3340 3340.42 ± 2.17 3338.48 ± 10.07 0.043 ± 0.002 0.048 ± 0.002 **

Amide A 3288 3284.96 ± 1.34 3285.11 ± 0.91 0.045 ± 0.002 0.048 ± 0.001 **

νas(CH3) 2958 2957.38 ± 0.53 2957.23 ± 0.48 0.015 ± 0.001 0.015 ± 0.01

νas(CH2) 2926 2928.15 ± 0.90 2927.75 ± 1.29 0.018 ± 0.002 0.018 ± 0.02

νs(CH3) 2874 2871.28 ± 0.47 2871.37 ± 0.48 0.0089 ± 6E-4 0.0088 ± 5Е-4

Amide I 1645 1643.61 ± 1.81 1643.58 ± 2.21 0.053 ± 0.001 0.052 ± 0.001 **

С О 1745 1738.85 ± 2.42 1739.95 ± 2.88 8.5E-4 ± 4E-4 0.0011 ± 5E-4 *

Amide II 1536 1537.34 ± 0.56 1538.04 ± 1.05 ** 0.063 ± 0.00277 0.066 ± 0.018 *

δ(CH2) 1452 1452.96 ± 0.56 1452.58 ± 1.29 0.0181 ± 9E-4 0.0177 ± 9E-4 *

νs(COO�) 1399 1399.93 ± 0.58 1400.37 ± 0.40 *** 0.023 ± 0.001 0.0237 ± 9E-4

νas(PO2
�) 1241 1241.07 ± 1.46 1240.52 ± 1.64 0.0105 ± 7E-4 0.0102 ± 5E-4 *

Amide III 1311 1311.80 ± 1.00 1312.81 ± 1.08 *** 0.0091 ± 7E-4 0.0088 ± 6E-4

νs(C O C) 1170 1170.71 ± 0.66 1170.50 ± 1.75 0.0020 ± 3E-4 0.0019 ± 2E-4

νs(PO2
�) 1078 1078.67 ± 0.57 1078.32 ± 0.77 0.0063 ± 5E-4 0.0054 ± 3E-4 *

C O 1029 1029 ± 0.24 1029 ± 0.20 0.0042 ± 4E-4 0.0041 ± 4E-4 *

Note: All centered bands existed in all measured spectra. Data are in mean (standard deviation).
*p < 0.05; **p < 0.01; ***p < 0.001.

4000 3500 3000 2500 2000 1500 1000

–0.0008

–0.0006

–0.0004

–0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

913
8615

07
15

87

28
49

2

IgG+

913
8888615

07

2

IgG+

stinu
R

T
A

Wavenumber, cm–1

15
8555
7

28
49

IgG–

35
52

33
62

29
23

16
54

FIGURE 2 Difference FTIR

spectrum (the result of subtracting

the average IgG+-group spectrum

from the average IgG�-group
spectrum).
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those components of the IR spectrum, which were more
in the IgG�-group, and the area of the graph below zero
shows the components of the IR spectrum, which are
more in the IgG+-group. Hence, it can be seen that
the average spectra of the two groups differ both in
the lipid regions (2923, 2849 and 1745 cm�1) and in the
protein and carbohydrate regions of the spectrum. The
IgG+- group is characterized by a greater contribution of
frequencies of 1654 (α-helical conformations of proteins)
and 1587 cm�1 (fibrinogen). The IgG�-group is character-
ized by a greater absorption at a wavenumber of
1626 cm�1 (β-sheet conformations of protein), a greater
absorption of the Amide II band and carbohydrate bands
of the spectrum (1070–1030 cm�1).

When analyzing the original IR spectra using
ANOVA, it was found that some bands had significant
changes in intensity in the group of recovered COVID-19
patients (Table 2), which indicates changes in the
amount of some components of blood plasma. As can be
seen from Table 2 and Table S1, the values of the relative
absorbance and the wave number of the protein absorp-
tion bands of both amide A and amide III showed signifi-
cant differences between the samples with recovered
COVID-19 patients and the control group (p < 0.05),
which indicates changes in protein concentrations.

Standard procedure signal amplification in the spectra
is the calculation of the second derivative. This technique
helps to conduct a more detailed analysis, by the removal
of a wide base of artifacts and sharpening. Figure 3 shows
the averaged second derivatives of IR spectra for two
groups of donors with standard deviations.

ANOVA (Table 2) shows that the differences in the fre-
quencies of stretching vibrations of CH2 and CH3 groups
are not statistically significant for the two groups of donors.

The average second derivatives of the IR spectra
(Table S1) demonstrate changes in the intensity of the
1399 cm�1 band, which is associated with symmetric
stretching of COO in the side chains of the protein.

There is a significant change (p < 0.01) in the absorption
of this band in the recovered COVID-19 patient group,
without a band shift.

The authors of Reference [21], who studied the IR spec-
tra of blood plasma of patients with COVID-19 in the acute
phase, found significant differences in the lipid regions of
the spectrum at frequencies of 1242 and 1078 cm�1. The
bands centered at 1242 and 1078 cm�1 correspond to asym-
metric and symmetric regions of PO2

� groups, respectively
[38]. Functional group PO2

� may arise from nucleic acids
or phospholipids in the blood serum. Since nucleic acids
such as extracellular circulating DNA (cirDNA) [39] or
SARS-CoV-2 RNA [40] are found in a limited amount in
human serum, the band at 1078 cm�1 can be attributed to
phospholipids. The authors of Reference [41] confirm that
in patients with mild, severe and fatal COVID-19, sphingo-
lipids and lysolecithin were observed with an increase of
3.5–5.5 times, while lecithin decreased by 50%–80%. How-
ever, such differences are not typical for the groups of
healthy donors and recovered COVID-19 patients.

As can be seen from Tables 2 and S1, the differences
between the groups of healthy donors and recovered
COVID-19 patients, which have statistically significant
differences, concern only the protein ranges of the
spectrum.

Thus, for further multivariate statistical analysis, the
optimal spectrum range of 1680–1489 cm�1 was selected,
which characterizes the protein part of the spectrum,
since changes occur in the protein composition of blood
plasma.

3.2 | Principal components analysis of
recovered COVID-19 patients and control
plasma samples

For antibody against SARS-CoV-2 determination, unsu-
pervised clustering was applied to the FTIR spectra of the
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FIGURE 3 Average second

derivatives of vector normalized IR

spectra of blood plasma samples

with antibodies to SARS-CoV-2 (IgG

+) and without antibodies (IgG�)
and their standard deviation.
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recovered COVID-19 patients and the control group
using principal component analysis (PCA). The accuracy
of clustering was evaluated considering type I and type II
errors [42]. Type I errors were encountered when the PC
scores of the blood plasma samples with antibodies to
SARS-CoV-2 (IgG+-group) were not clustered together.
Type II errors were seen when the PC scores of blood
plasma samples without antibodies to SARS-CoV-2
(IgG�-group) were clustered with the IgG+-group scores.

The location of the samples in the coordinates of the
first and second principal components does not show sig-
nificant differences in the composition of the analyzed
data (Figure 4). The differences are manifested only in the
higher principal components. The greatest effect on
the formation of lower principal components is made by
the presence of fibrins contained in the plasma, which
have a maximum absorption in the wavenumber range of
1600–1560 cm�1 To reduce the overlap of the two groups,
a narrower spectral range of 1680–1489 cm�1 was chosen.

Figure 4 demonstrates that the minimum number of
type I and type II errors (i.e. maximum grouping within
groups and minimum overlap between two groups) is
observed in the PC3–PC5 coordinates.

The scores for a sample of IR spectra of patients with
antibodies to SARS-CoV-2 and without antibodies in the
PC3–PC5 axes are shown in Figure 5a. The loadings of
the principal components were calculated for centered
and scaled data of the second derivative spectra. The
loads for the PC4 and PC5 components are shown in
Figure 5b. The highest values of the loadings in the nega-
tive region shift the coordinates of the sample counts to
the negative region as much as possible, the positive
values of the loadings—to the positive one.

Thus, the separation of the sample into two groups at
axes principal component PC3-PC5 depends on the load-
ing impact on the coordinates of a point at different
wavenumbers. For samples corresponding to patients
with antibodies to SARS-CoV-2, the greatest contribution

FIGURE 4 PCA result for two groups—control and recovered COVID-19 patients.

KARAS ET AL. 7 of 14

 18640648, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jbio.202200166 by IT

M
O

 U
niversity, W

iley O
nline L

ibrary on [12/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



to the coordinates of the points is made by positive values
of loadings calculated for PC4 at wavenumbers 1512,
1548, 1614, 1686 and 1692 cm�1 and positive values of
loadings calculated for PC5 at wavenumbers 1525, 1582,
1611, 1627, 1670 cm�1. For samples corresponding to
patients without antibodies to SARS-CoV-2, the largest
contribution to the coordinates of the points is made by
the negative values of loadings calculated for PC4 at
wavenumbers 1512, 1689 and 1692 cm�1 and positive
values of loadings calculated for PC5 at wavenumbers
1525, 1627, 1670 cm�1. Thus, the loading plots show that
the main contribution to this difference is made by the
frequency's characteristic of β-sheet structures, which are
the main elements of immunoglobulins.

It is known that FTIR spectroscopy provides informa-
tion on proteins, lipids and other components in serum,
but in a more comprehensive and macroscopic view.
Since proteins predominate in human serum, and albu-
min (about 70% of serum by mass) and IgG (14%) pre-
dominate in proteins, it can be assumed that changes in
amide I are closely related to two types of proteins. HSA
is predominated by α-helix and Ig by the β-sheet. The
increase in Ig levels and decreases in albumin levels in
the sera of patients with COVID-19, have been proved by
a lot of reports. The IgG level in the patient sera elevates
several times after the onset of COVID-19 [43–45]. As the
loading plots obtained by the analysis of the principal
components show, the main contribution to the differen-
tiation of the two groups is made by the loads at frequen-
cies characteristic of α-helical conformations (1665 cm�1)
and β-sheet conformations (1617, 1627, 1686, 1692 cm�1).

Thus, multivariate and statistical analysis made it
possible to assess the presence of seroconversion to
SARS-CoV-2 using infrared spectroscopy. The spectrum

of the second derivative can increase the separation of
overlapping bands and is thus more powerful than the
original spectrum. This finding shows that multivariate
methods hold promise for differentiating recovered
COVID-19 patients from healthy controls.

3.3 | A study of protein aggregation
in blood plasma samples from recovered
COVID-19 patients

Infection with coronavirus-2 (SARS-CoV-2)/COVID-19
severe acute respiratory syndrome leads to the develop-
ment of acute respiratory distress syndrome (ARDS).
ARDS and associated inflammatory conditions in
COVID-19 can lead to additional physiological abnormal-
ities, including long-term health problems related not
only to the respiratory system, but also to the heart and
the nervous system. In a couple of recent papers, the
authors hypothesized that some of these long-term com-
plications may be related to COVID-19-induced protein
aggregation [46, 47].

In a series of studies, it was shown that FTIR spec-
troscopy can be successfully used for the detection of pro-
tein aggregation [48–50]. Knowing this, we investigated
the components of the secondary structure of the sum of
proteins that make up human blood plasma to detect
intermolecular β-sheets representing amyloid aggregates.

As a result of studies carried out over the past few
years, a consensus has been reached regarding the use of
many IR components in the field of amide I [51–54]. In
general, the bands (in H2O) in the 1643–1615 and 1692–
1697 cm�1 regions are assigned to the β-sheet/extended
conformation, 1647–1654 cm�1 to disordered structures,

FIGURE 5 PCA scores plot of PC3 versus PC4 versus PC5 (a) in the 1680–1489 cm�1 region. Black dots represent the samples with

antibodies to SARS-CoV-2 (IgG+) and red dots the without antibodies (IgG�) (the control group). Loading plot of PC4 and PC5 (b) in the

1680–1489 cm�1 region.
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1651–1663 cm�1 to loops, 1653–1660 cm�1to α-helices
and 1663–1695 cm�1 to turns. Amide I peak fit analysis
has been shown to provide an accurate analysis of the
secondary structure of proteins [48, 55], indicating that
the procedure does not adversely affect the secondary
structure of most proteins.

For blood plasma for two groups, the secondary struc-
ture of protein components was calculated (Figure 6) by
the method of approximation (deconvolution) by Gauss-
ian curves of the second derivatives of the subtraction
spectra [56]. The results of deconvolution of the second
derivatives of the IR spectra of blood plasma for the
groups who have had COVID-19 patients and healthy
donors are presented in Table 3.

As can be seen from Table 3, the average values of the
components of the secondary structure of proteins for the
two groups differ; however, statistically significant differ-
ences are only the ones between the intermolecular
β-sheets for the group of recovered COVID-19 patients
and controls.

Thus, based on the ANOVA test and the deconvolu-
tion of the second derivatives of the IR spectra, it can be
concluded that the group of recovered COVID-19 patients
is characterized by a slight increase in the proportion of

aggregated protein in the blood plasma, which may con-
firm the assumptions about the possibility of the forma-
tion of amyloid fibrils in the course of disease.

3.4 | Differentiate COVID-19 from
Normal controls and sepsis

To exclude the association of the revealed differences
between the previous two groups of samples (healthy and
recovered COVID-19 patients) with post-COVID-19
inflammatory syndrome, plasma samples with confirmed
sepsis were used, as a clinical condition with the most
pronounced systemic inflammatory response. The study
included 40 such samples to assess the effectiveness of
the chemometric method.

Figure 7 shows the average IR spectrum with stan-
dard deviation for the control group, the group with anti-
bodies against SARS-CoV-2 and sepsis. Differences are
observed in the areas of amide A, amide I and amide III
(Figures 7 and 8).

Compared to healthy donors and donors who have
recovered from COVID-19, the spectra of blood plasma of
patients with sepsis are distinguished by a greater

(A) (B)

FIGURE 6 Examples of

deconvolution of the second

derivatives of IR spectra of blood

plasma, a recovered COVID-19

patient (a) and a healthy donor (b)

TABLE 3 Secondary structure of proteins that make up blood plasma recovered COVID-19 patients and the control group.

Component of secondary structure of proteins Group Mean SD SEM Median р

Intermol. β-sheet IgG+ 1.70 0.44 0.08 1.58 0.040

IgG� 1.48 0.38 0.07 1.49

β-sheet IgG+ 18.61 2.99 0.54 18.09 0.141

IgG� 17.37 3.43 0.62 16.79

Random coil IgG+ 11.87 2.21 0.39 12.29 0.809

IgG� 12.33 1.58 0.30 12.03

α-helix IgG+ 55.99 2.88 0.52 55.86 0.415

IgG� 56.59 2.74 0.50 57.11

β-turn IgG+ 12.01 3.06 0.54 13.21 0.343

IgG� 12.19 2.87 0.54 13.12
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intensity of the C H, C O bands characteristic of lipids
and an altered protein profile. In the plasma spectra of
patients with sepsis, a decreased content of α-helical con-
formations of proteins at a frequency of 1651 cm�1 and
an increased content of β-sheet conformations at a fre-
quency of 1635 cm�1 are observed (Figure 8). This
corresponds to an increased content of proteins with a
predominantly beta-sheet conformation, for example,

C-reactive proteins (CRP), as well as fibrinogen, which
has an absorption at 1580 cm�1. Also noteworthy are the
features at 1177 and 1744 cm�1, which correspond to cir-
culating triglyceride-rich lipoproteins and free fatty acids.
An increased level of circulating lipoproteins has been
described as “lipidemia” of sepsis [57].

Due to the great similarity of spectral profiles for the
three groups, chemometric approaches were used to

FIGURE 7 Average IR spectra of

a sample of blood plasma with

antibodies to SARS-CoV-2 (IgG ±),

without antibodies (IgG�), sepsis
with standard deviation.

FIGURE 8 Average second

derivatives of IR spectra of blood

plasma groups with antibodies to

COVID-19 (IgG+), without antibodies

(IgG�) and patients with sepsis with

standard deviation.

TABLE 4 Classification in the informative range of wavenumbers of the second derivatives of IR spectra.

Classifier
Median f1 score on
cross-validation

Mean f1 score on
cross-validation

Test
accuracy

Number of PCA
components

Gaussian process 0.71 0.74 ± 0.08 0.72 6

Decision tree 0.86 0.80 ± 0.12 0.81 21

KNeighbors 0.89 0.87 ± 0.08 0.85 34

SVC 0.89 0.89 ± 0.08 0.88 20

Random forest 0.94 0.89 ± 0.08 0.79 44

LDA 0.88 0.89 ± 0.09 0.87 28

MLP classifier 0.89 0.90 ± 0.05 0.86 21

AdaBoost 0.84 0.82 ± 0.11 0.78 35
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determine the spectral characteristics responsible for
class differentiation. For classification, the original data-
set transformed by the principal component analysis was
used. Well-known and efficient machine learning algo-
rithms. To classify the three groups, a spectral range of
1785–650 cm�1 was selected. The results of using various
classifiers are presented in Table 4. As can be seen, the
best classification performance was obtained with the
PCA-LDA, which showed an accuracy of 87% (Figures S3
and S4, Figure 9 and Table 4).

FIGURE 9 Results of

classification by PCA-LDA for three

groups of samples in the range of

1750–650 cm�1.

FIGURE 10 Artificial neural

network (a)—Architecture,

(b) dependence of loss function

during training (c) dependence of

accuracy during training.

TABLE 5 Quality parameters calculated in the test set to

classify healthy uninfected controls versus COVID-19 and sepsis-

infected samples with neural network.

Precision Recall F-score G-score

Control 0.81 0.90 0.85 0.85

COVID-19 0.90 0.82 0.86 0.86

Sepsis 1.00 1.00 1.00 1.00

Accuracy 0.91
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The neural networks were also used to increase the
classification accuracy. The range 650–1785 cm�1 of the
second derivative of the spectra was taken for analysis.
This band corresponds to 1177 points, which are input
values for the neural network. The neural network
forms two hidden layers (Figure 10a): in the first layer
there are 133 neurons with ReLU activation functions,
in the second layer there are 63 neurons with ReLU
activation functions, the third layer contains three neu-
rons with a sigmoid activation function. Each of the
three neurons of the output layer is responsible for its
own class corresponding to COVID-19, sepsis or a
healthy sample.

The loss function of categorical cross entropy and the
“Adam” optimizer were chosen for training the neural
network. The network was trained in 10 epochs, while
showing the values given in Table 5, the training sched-
ules are shown in Figure 10b,c.

Of all the models tested, the best classification perfor-
mance was obtained with the PCA-LDA and neural net-
work (Table 6) which showed good test accuracy (91% for
neural network) and sensitivity (85%). The F and G
scores show consistency, indicating that unbalanced class
sizes did not affect classification performance.

4 | CONCLUSION

Taking into consideration the time required, the com-
plexity of procedure and the detection of antibodies to
perform COVID-19 FTIR spectroscopy in combination
with multivariate analysis is a real tool for screening and
identifying recovered COVID-19 patients. In this study,
we used the ATR-FTIR spectroscopic method to elucidate
changes in blood biochemical composition after recovery
from COVID-19. The results showed mainly changes in
the vibrational modes of proteins.

The PCA method shows that two groups, control and
recovered COVID-19 patients, are well differentiated in
the range of 1680–1490 cm�1, which indicates their dif-
ference in protein components. When classifying three
groups (control, recovered COVID-19 patients, sepsis),
the best sensitivity and specificity is shown by analysis in
the range of 1750–650 cm�1. Chemometric methods such
as PCA-LDA (87%) and ANN (91%) show greater
accuracy.

The study shows that multivariate and statistical
analysis provides an opportunity to assess the diagnosis
of COVID-19 using second derivatives of infrared
spectra and holds promise for differentiating recovered
COVID-19 patients from healthy controls.

In addition, IR spectroscopy data allow us to assess
the increased growth of aggregated proteins in the blood
plasma of patients who have had COVID-19, which con-
firms modern ideas about the possibility of the formation
of amyloid fibrils after a previous illness.

It is important to note that this method is fast and
does not require labeling, and its use on a large scale may
become possible in the future. Thus, the research results
suggest that the IR spectroscopy method used in conjunc-
tion with chemometric methods has high potential in
the mass diagnosis of the presence of immunity to
SARS-CoV-2.
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